
Introduction
Cisplatin (diamminedichloroplatinum (II)) is strongly 
believed to be one of the most important cytotoxic 
anticancer medications due to its broader efficacy in treating 
various types of cancer such as brain, neck, ovarian, lung, 
testicular, cervical, and breast (1). The primary cytotoxic 
mechanism is the formation of a DNA adduct (2). Along 
this line, cisplatin treatment has been linked to various 
toxic side effects including hepatotoxicity, nephrotoxicity, 
cardiotoxicity, neurotoxicity, and nausea (3). These adverse 
effects of cisplatin-induced pulmonary damage have been 
attributed to increased lipid peroxidation (LPO) caused by 
free oxygen radicals and decreased antioxidant parameters 
(4). In previous research, cisplatin increased the amount 
of malondialdehyde (MDA), reduced enzymatic and 
nonenzymatic antioxidant levels, and caused severe DNA 
damage (5). Propofol (2,6 diiasopropylphenol) is the 
most widely used hypnotic agent for induction anesthesia 
and is a mainstay in sedation in critically ill patients (6). 
Remarkably, some characteristics of propofol, including 
the rapid onset of hypnosis, titratability, short duration of 
action, rapid elimination, and minimal effects on evoked 
potentials make it ideal for general anesthesia, monitored 

anesthesia care, and total intravenous (IV) anesthesia. 
In addition, propofol causes the potentiation of GABA 
receptors and the antagonism of NMDA receptors (7). 
The chemical structure of propofol contains a phenolic 
hydroxyl group which is similar to that of α-tocopherol 
(vitamin E), which is a natural antioxidant. Based on 
the findings of another study, the antioxidant activity of 
propofol results was partly observed for the phenolic 
structure in vitro and in vivo (8). It was further shown that 
propofol antioxidant properties inhibit LPO, resulting in 
the removal of reactive oxygen species (ROS). Despite its 
sedative and anesthesia functions, propofol has some other 
applications such as the management of acute pain, an 
agent for preventing the exacerbations of chronic migraine 
headaches, and in opioid-induced hyperalgesia (8). The 
present study investigated the antioxidant characteristics 
of propofol against cisplatin-induced pulmonary toxicity 
in rats.

Materials and Methods
Chemicals
Trichloroacetic acid, tetraethoxypropane, 2,4,6-tripyridyl-
s-tiazine (TPTZ), 2-thiobarbituric acid (TBA), n-butanol, 

Avicenna Journal of Pharmaceutical Research

© 2020 The Author(s); Published by Hamadan University of Medical Sciences. This is an open-access article distributed under the terms of 

the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 

2020 December;1(2):72-75

Pulmonary Protective Effects of Propofol on Cisplatin-
Induced Oxidative Damage in Male Rats

Sajjad Makhdoomi1,2 ID , Akram Oftade1,2, Sodabe Khodabandehlou1,2, Akram Ranjbar2* ID

1Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
2Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, 
Hamadan University of Medical Sciences, Hamadan, Iran

   http://ajpr.umsha.ac.ir

Research Article

Received 27 July 2020, Accepted: 13 September 2020, ePublished: 30 December 2020

Abstract
Background: The present study was performed to investigate the protective effects of propofol against 
cisplatin-induced pulmonary toxicity in rats.
Methods: A total of 20 male Wistar rats weighing 180-250 g were divided into four groups of control, 
the cisplatin-intoxicated group intraperitoneally (IP) injected with cisplatin (7 mg/kg/d for a week), the 
propofol group (10 mg/kg/d, IP), and the protected group receiving propofol (10 mg/kg/d, IP) poisoned 
by cisplatin. Then, the biomarkers of total antioxidant capacity (TAC), catalase (CAT) activity, and lipid 
peroxidation (LPO) were measured in homogeneous lung tissues. 
Results: The data revealed the evidence of oxidative stress in the lung tissue of cisplatin-intoxicated rats 
as indicated by an increase in the level of LPO compared with propofol and protected groups (P<0.05). 
Moreover, TAC decreased in the cisplatin group while it increased in the propofol group compared to 
cisplatin and protected groups (P<0.05). No significant difference was observed between the groups 
regarding CAT (P>0.05). Protection with propofol ameliorated the oxidative stress induced by cisplatin in 
the lung tissue because of the reduction of LPO.
Conclusion: According to these results, it seems that propofol provides a remarkable protection against 
cisplatin-induced oxidative pulmonary damage mediated by its antioxidant properties.
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propofol (Propofol-Lipuro 1%: Braun Melsungen AG 
Germany), and cisplatin were used in this investigation. 
All reagents and other chemicals were purchased from 
Sigma-Aldrich Company (USA).

Animals and Treatment
In this experimental study, 20 male Wistar rats (weighting 
180-250 g) were used and kept at a 12:12 hour light-dark 
cycle and temperature-controlled (20±2) with free access 
to drinking water and standard laboratory chow. Animals 
were randomly divided into four groups (each including 
5 rats) and then, treated intraperitoneally (IP) once a day 
for a week.

The design of these treatments resulted in four 
experimental groups including control, cisplatin, 
propofol, and protected (cisplatin with propofol) groups. 
Continually, propofol was administrated (10 mg/kg/d, IP) 

according to (9,10) alone or in combination with cisplatin 
(7 mg/kg/d, IP) according to (11,12). The control group 
received only normal saline. Finally, animals were killed 
24 hours after the last dose of treatment and their lung 
tissue samples were taken and then homogenized in ice-
cold phosphate buffers (50 mM, pH=7.4) appropriate 
for the measured parameter. The tissue homogenates 
were centrifuged at 5000 rpm for 20 minutes at 4°C, and 
the supernatants were extracted to analyze LPO, total 
antioxidant capacity (TAC), and catalase (CAT)  activity 
levels (13).

Oxidative Stress Biomarker Assay
Oxidative biomarkers including LPO, TAC, and CAT were 
measured in lung homogenate.

Measurement of Lipid Peroxidation
In this method, the LPO product in the lung tissue was 
determined by the TBA reagent during an acid heating 
reaction expressing the amount of MDA productions. 
Finally, the calibration curve of the tetramethoxypropane 
standard solution was used to determine the concentration 
of TBA-MDA adduct in the sample (14).

Measurement of Total Antioxidant Capacity
In this protocol, TAC was calculated with the ferric 
reducing ability of homogenate assy. This process is based 
on the ability of lung homogenate in reducing Fe3+ to 
Fe2+ in the presence of TPTZ. In addition, the reaction 
between Fe2+ and TPTZ causes a blue color complex and 
the maximum absorption at 593 nm (15).

Measurement of Catalase
The enzyme CAT is regarded as a biochemical marker 
which is useful for evaluating the oxidative stress and 
ROS (16). CAT activity was measured by the absorbance 
decrease at 240 nm in a reaction medium containing H2O2 
(10 mM) and sodium phosphate buffer (50 mM, pH=7.0) 
according to (17).

Statistical Analysis
The results were expressed as the mean ± standard error 
of the mean of at least three independent experiments 
performed two times or more. The data were analyzed by 
the one-way analysis of variance, followed by performing a 
least significant difference test to compare multiple groups. 
A P value <0.05 was considered statistically significant.

Results
Oxidative Stress Parameters
Lipid Peroxidation 
Based on the results (Figure 1), cisplatin caused a noticeable 
increase in LPO compared with the control group 
(P = 0.011) while propofol induced a significant decrease 
in LPO in comparison with the cisplatin group (P = 0.007). 
Finally, coadministration of cisplatin and propofol led to a 
reduction in cisplatin-induced LPO (P = 0.006).

Total Antioxidant Capacity 
The obtained data (Figure 2) demonstrated that TAC 
reduced by cisplatin in comparison with the control group 
(P = 0.004) whereas treatment with propofol increased 

 
 

Figure 1. LPO in Lung Rats. Note. LPO: Lipid peroxidation; Pf: Propofol; Cis: Cisplatin; Pf + Cis: Propofol 
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Figure 1. LPO in Lung Rats. Note. LPO: Lipid peroxidation; Pf: 
Propofol; Cis: Cisplatin; Pf + Cis: Propofol +cisplatin. Values are 
shown as the mean ± SE (n = 5). aa Significantly different from the 
control group at P < 0.05; bb Significantly different from the Cisplatin 
group at P < 0.05; 

 
 
 

Figure 2. TAC in Lung Rats. Note. TAC: Total antioxidant capacity; CI: Confidence interval; Pf: Propofol; Cis: 

Cisplatin; Pf + Cis: Propofol +cisplatin. Values are indicated as the mean ± SE (n = 5). aa Significantly different from the 

control group at P < 0.05; bb Significantly different from the Cisplatin group at P < 0.05;  
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Figure 2. TAC in Lung Rats. Note. TAC: Total antioxidant capacity; 
CI: Confidence interval; Pf: Propofol; Cis: Cisplatin; Pf + Cis: 
Propofol +cisplatin. Values are indicated as the mean ± SE (n = 
5). aa Significantly different from the control group at P < 0.05; bb 
Significantly different from the Cisplatin group at P < 0.05; 
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TAC compared with the cisplatin group (P = 0.001). 
Eventually, coadministration of cisplatin and propofol 
remarkably increased the TAC level compared with the 
cisplatin group (P = 0.015).

Catalase Activity
It is noteworthy that the CAT enzyme failed to show 
noticeable variations between the groups (Figure 3). 

Discussion 
Cisplatin-induced pulmonary damage was indicated by 
oxidative stress biomarkers. It seems that the biochemical 
mechanism of the injury of cisplatin and other platinum-
based cytotoxic drugs is related to the production of 
intracellular ROS upon DNA (18). In this investigation, the 
biochemical tests revealed significantly increased levels of 
LPO and decreased levels of TAC with cisplatin toxicity. 
Further, the result showed that propofol attenuated 
cisplatin-induced lung injury, which may be associated 
with its antioxidant properties. In normal conditions, 
a balance is observed between oxidant and antioxidant 
levels in the system. According to evidence, cisplatin leads 
to the generation of free radicals, causing an increase in 
cell membrane LPO and the overproduction of MDA. 
Furthermore, it has been reported that tissue injury can be 
associated with a notable decrease in antioxidant defense 
mechanisms involved in the pathogenesis of cisplatin-
induced oxidative damage (4). In a similar study, Afsar et 
al reported that MDA and H2O2 levels increased whereas 
the level of glutathione and other enzymatic antioxidants 
decreased in the presence of cisplatin-induced lung 
damage (5). Likewise, Leo at el found that cisplatin 
chemotherapy-induced structural pulmonary damage 
associated with fibrosis, interstitial inflammation, and 
destructive bronchiolitis (19).

On the other hand, propofol indicates antioxidant 
properties through a reduction in oxidative stress 
induced by cisplatin, and the result of the present study 
confirmed this issue because of the reduction of LPO in 
the protection group poisoned by cisplatin. According to 

some studies (20-23), flavonoids, vitamin E, and vitamin C 
exhibit their antioxidant activity by different mechanisms 
(e.g., by scavenging radicals). Remarkably, the antioxidant 
characteristics of propofol can be due to its capacity 
in diminishing LPO (24), activating the expression of 
antioxidant enzyme home oxygenase-1 (25), decreasing 
the expression of nitric oxide synthase (26), and fixing 
the mitochondrial membrane (27). Meanwhile, previous 
research demonstrated that propofol has effective efficacy 
against acute lung injury in rats (28). Recently, it has been 
reported that propofol ameliorates the acute lung injury 
in neonatal rats with lipopolysaccharide-induced lung 
injury by preventing inflammations such as tumor necrosis 
factor-α, interleukin (IL)-6, and IL-1β and oxidative stress 
(29). 

Because of high lipophilicity, propofol penetrates to 
mitochondria, accepting electrons and disrupting the 
electron transport chain at the level of coenzyme Q 
(30). Therefore, propofol leads to a failure in adenosine 
triphosphate production inhibiting the mitochondrial 
fatty acid metabolism, causing the buildup of fatty acids 
(30,31). These disruptions caused to emerge the term 
‘propofol infusion syndrome’,  which is the prolonged 
infusion of propofol (> 4 mg/kg/h for more than 24 
hours). The syndrome presents with metabolic acidosis, 
hyperlipidemia, hyperkalemia, and rhabdomyolysis (32).

To the best of our knowledge, propofol not only acts as 
a scavenger of free radicals and thus protects the body but 
also has been shown to increase the antioxidant activity 
of human plasma and protects cells from oxidative stress 
by impeding LPO (33). Additionally, propofol is shown to 
have some neuroprotective effects (34). 

Having summarized all the point about the protective 
effects of propofol in cisplatin-induced pulmonary 
toxicity, according to the results of this investigation, 
cisplatin exposure results in a remarkable increase in LPO 
production by the generation of free radicals while propofol 
decreases the level of LPO because of its antioxidant 
property (Figure 1). Thus, it seems that cisplatin-induced 
oxidative damage could be improved by propofol, which 
justifies why it can prevent the sequence of oxidative stress.
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