
Introduction
According to recent estimates, diabetes is one of the most 
common chronic metabolic diseases worldwide, as per 
the International Diabetes Federation (IDF), and it affects 
approximately 463 million adults, with a prediction to 
reach 700 million by 2045 (1). The inability of our body to 
react to the availability of sufficient insulin causes failure 
in signaling components, which results in the development 
of insulin resistance (2–5). In systems biology, modeling 
the complex behavior of signal transduction pathways 
is an interesting area of research. Experiments to 
classify the molecular components and interactions in a 
system of interest are supplemented with mathematical 
models. Control theory and mathematical modeling are 
increasingly being used to address complex biological 
questions concerning the aetiology of diabetes, as they are 
uniquely suited to gaining system-wide insights (6-9). It 
is debatable if type 2 diabetes (T2D) can be fully cured. 

However, for T2D patients, the most commonly prescribed 
therapies include a healthy lifestyle, decent food, exercise, 
and allopathic drugs such as metformin (10-23). The 
importance of exercise in the management of T2D is 
widely acknowledged. In order to detect the initiation and 
metabolism of a T2D patient, an in silico analysis of the 
effects of physical activity on the GLUT4 translocation is 
important. There are many statistical analyses available, 
but there are very few mathematical models and in silico 
studies in this area. Alternative therapies such as exercise 
and acupuncture are explored as advanced and common 
remedies for T2D in response to unsatisfactory drug use in a 
recent survey (24-43). The mathematical model developed 
by Sedaghat et al specifically represents the complexities of 
metabolic insulin signalling pathways (ISPs) and simulates 
the dynamics of various components involved in signal 
transduction mediating GLUT4 translocation in skeletal 
muscle (44). Joshi et al created an in silico dynamic model 
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Abstract
Background: The widespread adoption of a sedentary lifestyle characterized by the consumption of a high-
energy diet combined with a lack of physical activity has resulted in a rise in the prevalence of metabolic 
disorders like type 2 diabetes (T2D) globally. The data published by the International Diabetes Federation 
(IDF) every year catches the attention of the world. Insulin resistance results in the dysregulation of the 
control mechanism that leads to T2D. In addition to metformin as a globally prescribed drug, physical 
exercise is recommended for the treatment of T2D as an alternative therapy. In today’s systems biology 
era, sensitivity analysis plays a major role in providing deeper insights into the metabolic insulin signalling 
pathways (ISPs). 
Methods: Here, the complex in silico dynamic model of the effect of alternative therapies on T2D was 
examined. In order to obtain more quantitative information about the signal transduction network of the 
ISPs and their interaction, a global sensitivity analysis of the in silico model was carried out using the 
MATLAB tool. 
Results: This study sheds light on the effect of parameter perturbation on the ISP via GLUT4 translocation in 
T2D patients performing physical exercise and using metformin. It also allows for the selection of a variety 
of parameters for in vivo or in vitro studies in the future on the basis of the impact of parameter variations 
on each component of the pathway. 
Conclusion: The Sobol index for each condition was noted after introducing perturbations in the most 
sensitive parameters. These results can provide experimental guidance on how the variations in model 
inputs have affected the model outputs.
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that quantifies the impact of exercise and metformin on 
GLUT4 translocation by extending the model developed 
by Sedaghat et al. The signaling pathways that show the 
effect of exercise and metformin were incorporated into 
the in silico model, and the results were satisfactory (21).

In the present work, the dynamic in silico model developed 
by Joshi et al (21) was utilized, and perturbations were 
introduced to analyze the impact on GLUT4 concentration 
via sensitivity analysis. The sensitivity analysis method is 
used to assess the relationships between input parameters 
and model outcomes. Sensitivity analysis helps one to 
investigate the effects of changing system parameters 
from their normal state and to define the parameters that 
influence system behavior. The information gathered can 
be useful in gaining a better understanding of the context 
and proposing hypotheses regarding key processes in a 
system. Additionally, a background can be obtained for 
speculating about how we could interfere with the system 
to generate specific behaviors. Parameter sensitivity 
analysis is a method for determining how different 
parameters enhance the outcome. The output is said to 
be responsive to a parameter if it has a significant impact 
on the output in comparison to the other parameters. The 
most significant parameters in a model can be identified 
using sensitivity analysis. Many of the parameters in 
mathematical models of biological and other complex 
systems are not or cannot be precisely defined. Sensitivity 
analysis refers to a collection of techniques for evaluating 
the effect of parameter uncertainty on a model. Numerous 
researchers have used a variety of techniques to conduct 
sensitivity analysis on the model developed by Sedaghat 
et al (44). Drugs may be able to target key parameters to 
improve disorders.

Kwei et al carried out the sensitivity analysis on the 
Sedaghat model of ISPs with feedback to reduce the 
parameter estimation error. It was done by optimizing the 
input perturbation and state measurement choices. The 
results revealed a range of sensitive parameters appropriate 
for drug targeting (45). Based on the models developed 
by Sedaghat et al, Liu et al used dynamic sensitivity and 
control analyses to investigate the GLUT4 metabolic 
ISPs. They measured the time-dependent sensitivities 
of membrane GLUT4 concentrations in relation to all 
reaction parameters. The findings were in line with 
experimental findings and estimates of drug targets in 
the literature (46). Further, local parametric sensitivity 
analysis was carried out by Gray on the ISPs as per the 
Sedaghat model. The parametric sensitivity analysis 
disclosed a number of key aspects of the model. Across 
the spectrum of insulin concentrations, the sensitivity 
of several parameters changed considerably. The results 
were used to identify the major regulatory positions in 
the signaling network as well as network weaknesses. 
The parameter sensitivity analysis also identified areas 
where the model could be improved. Additionally, since 
experimental measurements in biological systems can 
be scarce, it is critical to create an experimental design 

that can extract as much information about model 
parameter values as possible from small and noisy 
data sets. Since the Sedaghat model lacks experimental 
validation, Kwei et al used parameter sensitivity analysis 
to construct experimental designs that are efficient for 
model identification, given constraints on measurement 
error and cost (45). Charzyńska et al performed a 
sensitivity analysis on the membrane receptor system 
using a mathematical model developed by Shankaran et 
al. The use of a deterministic system was justified in any 
case because of the conclusions drawn from the findings. 
Furthermore, some of the parameters were found to have 
a minor effect on the results of the system (47,48). As can 
be seen from the literature, different methods have been 
used to conduct sensitivity analysis on the ISPs. However, 
sensitivity analysis of the in silico model that takes into 
account the impact of exercise and metformin on GLUT4 
translocation in ISPs in T2D patients is still lacking. The 
present research work is the first attempt to perform 
global parametric sensitivity analysis using the Sobol 
method on the dynamic in silico model developed by 
Joshi et al (21), which quantifies the effect of exercise and 
metformin on GLUT4 translocation. Both in vivo and in 
vitro experiments are expensive and time-consuming. 
As a result, this analysis of the in silico model will aid in 
the cost-effective execution of a number of experiments 
without the use of actual cells. The findings of the global 
sensitivity analysis of the in silico model of the impact 
of exercise and metformin on ISPs could be used as a 
refinement tool in the discovery of combinatorial anti-
diabetic drugs.

Exercise and Metformin Interaction With ISPs in T2D: 
Dynamic In Silico Model 
The dynamic in silico model has already been published 
recently. To establish a connection for the reader, here 
is a brief explanation. For a detailed description, one 
may refer to the paper by Joshi et al (21). The signaling 
pathways are made up of a complex system with several 
inputs, outputs, and interactions. While a complete 
understanding of this complex structure is still a work 
in progress, the basic mechanisms that govern GLUT4 
translocation are well understood. AMPK activation 
mechanisms are the main drivers of GLUT4 translocation. 
The effects of insulin, metformin, and physical activity 
on GLUT4 translocation are depicted in Figure 1 and 
can be simulated using Cell Designer software (49,50). 
The ISP is composed primarily of insulin, which binds 
to the insulin receptor and induces autophosphorylation 
and activation. Insulin receptor substrate-1 (IRS1) is 
further phosphorylated as a result of this activation, 
forming a complex with phosphatidylinositol-3-kinase 
(PI3K). Phosphatidylinositol triphosphate (PIP3) is 
generated by the IRS1-PI3K complex, which then 
interacts allosterically with phosphoinositide-dependent 
kinase 1 (PDK1). Protein kinases AKT and PKC are 
phosphorylated by the PIP3-PDK1 complex, which then 
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cause glucose transporter (GLUT4) translocation to the 
cell membrane via an unknown mechanism to uptake 
glucose. A few other proteins influence the activity of this 
pathway (44,51). Another pathway is the activation of 
AMP-activated protein kinase (AMPK) by exercise and 
metformin, which then catalyzes PKC phosphorylation 
and increases GLUT4 translocation to the plasma 
membrane (52-54). For the dynamic model, the value 
of PTP was changed from 1 to 1.5 to simulate T2D. 
Moreover, the exercise intensity was simulated on the 
basis of changes in cellular energy, which is represented 
by parameter kstim (a parameter to represent exercise 
intensity) in the model. The values and parameters can 
be referred to in detail in published papers (21,54).

Considering that the impact of exercise and metformin 
on the GLUT4 translocation was established quantitatively, 
a Sobol-based sensitivity analysis was carried out to analyze 
the impact of individual parameters and their interactions 
on the GLUT4 translocation in a person with T2D who 
performed exercise and used metformin. This is the first 
time such an analysis has been performed on a dynamic in 
silico model of T2D with a metformin dose of 500 mg and 
an exercise intensity of kstim = 1.

Sobol Sensitivity Analysis: Methodology  
Global sensitivity analysis is an effective approach that 
determines which parameters and their interactions are 
the most influential in the overall behavior of the model 
over the entire parameter space. Several global sensitivity 
analysis methods, such as multiparametric sensitivity 
analysis and Sobol’s method, are available for the model. 
Zhang et al conducted a study summarizing the distinct 
features of each method (55). Among all the methods of 
global sensitivity analysis summarized, Sobol sensitivity 
analysis based on variance decomposition is currently one 
of the most powerful techniques (56-59).

In Sobol-based global sensitivity analysis, the variance 
of the output of the model is decomposed into fractions 
that are attributed to various inputs or their interactions. 
The ultimate aim of a Sobol sensitivity analysis is to figure 
out the variability that is observed in the performance of 
the model due to each input parameter or the interaction 
of various input parameters. The first-order Sobol index 
measures the effect of individual parameters on output 
variance. The total order Sobol index measures the effect 
of individual parameters and their interactions with other 
parameters on the output variance. Therefore, the entire 

Figure 1. Dynamic In Silico Model of T2D (Exercise Intensity of 1 and Metformin Dose of 500 mg) (21).
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parameter space is covered. The higher the value of the 
Sobol index, the more influential the respective model 
parameter. Although there are no established rules for 
selecting the significance level, 0.05 is commonly used for 
performing the analysis. The significance level was used 
to identify the relative importance of parameters. For the 
present research work, our recently published dynamic in 
silico model was used (44). Sobol-based global sensitivity 
analysis was carried out on the in silico dynamic model 
as shown in Figure 1. MATLAB was used as a tool for 
global sensitivity analysis to perform Sobol analysis on 
the dynamic in silico model. The steps to perform a Sobol 
sensitivity analysis were as follows:
1. Import an in silico model from Cell Designer to 

SimBiology in MATLAB
2. Export the model from SimBiology to a MATLAB 

workspace
3. Launch the global sensitivity analysis
4. Select the Sobol sensitivity analysis parameters
5. Select the total number of samples
6. Provide ranges for the selected parameters
7. Select the output parameter (GLUT4)
8. Perform computation
9. Examine the first and total order Sobol indices

The initial values of each parameter are taken from 
the literature (44) and our recently published paper (21). 
Considering that we had a greater number of parameters 
for the simulated dynamic in silico model, we carried out 
global sensitivity analysis on all the input parameters at 
first with a given range of ± 10% perturbation, as shown in 

Figure 2. It is important to note that the details of all the 
parameters can be obtained through the model developed 
by Sedaghat and the model developed by Joshi et al (21).

The surface GLUT4 concentration was chosen as the 
output parameter. After analyzing the Sobol indices of all 
the parameters, those having a significance level of more 
than 0.05 were chosen for the second round of the Sobol 
sensitivity analysis with a varied range of perturbation for 
each parameter. The results obtained for each condition of 
the dynamic in silico model are discussed in the following 
section.

Results and Discussion
The application of a dynamic in silico model is the 
ultimate goal of the sensitivity analysis. Here, the Sobol-
based sensitivity analysis was carried out to investigate the 
following aspects:
1. Impact on GLUT4 under normal conditions
2. Impact on GLUT4 under type 2 diabetic conditions
3. Impact on GLUT4 when an individual with T2D uses 

metformin
4. Impact on GLUT4 when a person with T2D takes 500 

mg of metformin and engages in physical activity at 
an intensity of kstim = 1

First, Sobol sensitivity analysis was carried out for all 
the parameters under normal conditions within the range 
of ± 10%. For each parameter, we examined the first and 
total order Sobol indices. Those parameters with a Sobol 
index value greater than 0.05 were considered significant 
and were chosen for further Sobol sensitivity analysis in 

Figure 2. Global Sensitivity Analysis of Insulin Signaling Pathways.
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all of the cases mentioned above. The range of the selected 
significant parameters was determined by performing a 
multiparametric global sensitivity analysis on all of the 
parameters under normal conditions with the classifier 
(max (GLUT4 concentration) > 30%). We chose the range 
for each parameter that showed a larger impact on the 
GLUT4 concentration, and then we performed the Sobol 
sensitivity analysis for all the cases. The parameters that 

were chosen for the final Sobol sensitivity analysis with a 
significance value greater than 0.05 included k7, k_7, k8, 
k_8, k9_stimulated, k_9, k13, and k_13.

The variation in the Sobol indices was clearly observed 
in Figure 3 when we compared the values for various 
conditions. The values of the first and total order Sobol 
indices are noted in Table 1 under all the conditions.

It was observed that the Sobol index value for a certain 

Figure 3.  Sobol Analysis of Insulin Signaling Pathways.

Table 1. Sobol Indices

Parameters

Normal T2D Metformin (500 mg)
Metformin 

(500 mg) + exercise 
(kstim = 1)

First Order 
Sobol Index

Total Order 
Sobol Index

First Order 
Sobol Index

Total Order 
Sobol Index

First Order 
Sobol Index

Total Order 
Sobol Index

First Order 
Sobol Index

Total Order 
Sobol Index

k7 (rate constant for insulin receptor substrate 
phosphorylation)

0.12 0.13 0.13 0.13 0.11 0.12 0.12 0.13

k_7 (rate constant for insulin receptor 
substrate dephosphorylation)

0.01 0.01 0.02 0.02 0.03 0.03 0.02 0.03

k8 (rate constant for insulin receptor substrate 
1 complex formation)

0.03 0.03 0.03 0.02 0.15 0.15 0.02 0.02

k_8 (rate constant for insulin receptor 
substrate 1 complex reversed)

0.23 0.23 0.22 0.22 0.17 0.19 0.22 0.22

k9_stimulated (rate constant of PIP2 to PIP3 
formation)

0.27 0.28 0.26 0.26 0.23 0.22 0.25 0.26

k_9 (rate constant of PIP3 to PIP2 formation) 0.43 0.42 0.42 0.42 0.35 0.35 0.41 0.41

k13 (rate constant for translocation of GLUT4 
to the cell surface under basal condition)

0.09 0.09 0.10 0.10 0.06 0.06 0.09 0.09

k_13 (rate constant for translocation of GLUT4) 0.24 0.24 0.22 0.22 0.22 0.22 0.23 0.23
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parameter was higher when a person was type 2 diabetic 
in comparison to those under normal conditions. This 
shows that the impact of parameters on the variance in 
GLUT4 concentration is more pronounced when a person 
becomes type 2 diabetic. Surprisingly, after obtaining the 
Sobol indices for the cases with metformin alone and with 
metformin and exercise, a significant difference in GLUT4 
concentration was observed. This shows that when a type 2 
diabetic person uses metformin, the impact of parameters 
on the GLUT4 concentration changes in comparison to 
that under normal conditions. Additionally, when exercise 
is combined with metformin, a significant variation in the 
GLUT4 concentration is observed.

For all the cases, it was clearly observed that when 
perturbations are introduced to the sensitive parameters, 
the impact on the output is different in every condition. 
Therefore, this approach can be utilized to predict the 
effect of parameter variations on the T2D targets used in 
drug development and testing, which can bring about a 
revolution in the pharmaceutical industry.

Conclusion
Sensitivity analysis plays a major role in understanding 
the impact of variations in the output parameters caused 
by input perturbations. The Sobol sensitivity analysis 
concept was used in this study to understand the impact 
of alternative therapies such as physical exercise and 
metformin as an allopathic drug on the surface GLUT4 
concentration for variations in the globally sensitive input 
parameters using MATLAB and Cell Designer. Variations 
in Sobol indices clearly demonstrated different levels of 
impact on output under various input conditions in both 
normal and T2D states. In the future, these results could 
be utilized in the pharmaceutical industry to identify the 
global target for metabolic disorders like T2D and perform 
in vivo and in vitro analyses.
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